Session 4: Graphics

Li (Sherlly) Xie

Session 4 Flow

- 1. Summary of Session 1-3 Materials
 - a. Types of Variables
 - b. Descriptive Statistics
- 2. Data Visualization
 - a. Univariate/Single-Variable Visualization

Bivariate visualization next week

Sessions 1-3: From Information to Datum

Pop Quiz-Identify The Variable Type

pt_I D	Male	Grade _K12	degree _burn	ER_ wait_ time. min	visit_ accomp _by_ parent	Type _of_ insur	Date _ER visit	doc_ notes	AgeCategory _0.under9_ 1.age9to18	SBP_ admsn	DBP_ admsn
33	Т	3	1	17	Т	CHIP	01/01/ 2013	multiple burns	0	115	70
1	F	7	1	22	F	PPO	02/07/ 2013		1	120	75
17	F	11	2	5	Т	НМО	01/09/ 2013	blisters	1	115	80

Categorical: ordinal, nominal (di-/multi-chotomous)

Quantitative: continuous, discrete

Usual Univariate Graphic Displays

Table: Tabulating by Marginal Distribution

Table 1 Descriptive statistics

Variable	n	Minimum	Maximum	Mean	SD
Sex	346	0	1	.51	.50
Family socioeconomic status	343	-1.99	3.44	.02	.96
Maternal BMI	346	16.44	61.99	26.07	6.00
Age 11 pubertal status	322	1.00	4.50	2.13	.81
Age 13 pubertal status	330	1.00	5.00	3.47	.95
Age 15 pubertal status	346	2.00	5.00	4.36	.48
Age 11 mental health symptoms	307	-1.58	3.05	.02	.90
Age 13 mental health symptoms	303	-1.54	4.41	00	.85
Age 15 mental health symptoms	292	-1.57	3.46	00	.96
Age 11 morning cortisol	297	1.17	2.81	1.22	.02
Age 11 cortisol slope	297	02	01	02	.00
Age 13 morning cortisol	306	1.16	1.38	1.23	.03
Age 13 cortisol slope	306	02	01	02	.00
Age 15 morning cortisol	272	1.17	1.34	1.22	.02
Age 15 cortisol slope	272	02	01	01	.01
Longitudinal morning cortisol	346	1.12	1.20	1.14	.01
Longitudinal cortisol slope	346	04	01	02	.00
Age 11 BMI	325	-2.36	2.81	.34	1.03
Age 13 BMI	331	-2.38	2.69	.42	1.01
Age 15 BMI	319	-3.46	2.64	.42	.97
Age 18 BMI	305	-2.64	2.63	.31	1.05

Adolescent BMI represents z-score for age and sex.

Sex is coded 0 = males, 1 = females; BMI = body mass index; cortisol = predicted logged values ($\mu g/dL$).

Ruttle PL, Javaras KN, Klein MH, Armstrong JM, Burk LR, Essex MJ. "Concurrent and Longitudinal Associations Between Diurnal Cortisol and Body Mass Index Across Adolescence." J Ado Health. In Press.

Table: Tabulating by Subgroup

Table 1. Demographic data among all levels of body weights							
Variables	<i>Underweight</i> (n = 52)	<i>Normal</i> (n = 56)	Overweight (n = 38)	Obesity (n = 51)			
Age, years	7.5 ± 4.2 (2.0 to 18.0)	8.3 ± 4.1 (2.0 to 18.0)	8.2 ± 4.2 (2.0 to 18.0)	8.6 ± 4.2 (2.0 to 16.0)			
Gender (male)	36 (69.2)	36 (64.3)	29 (76.3)	41 (80.4)			
BMI z score ^{†‡§∥∮∫}	$-1.01 \pm 0.30 \ (-1.5 \text{ to } 0.0)$	$-0.31 \pm 0.45 \; (-0.9 \text{ to } 0.7)$	$0.23 \pm 0.48 \; (-0.4 \; \text{to} \; 1.3)$	$1.20 \pm 0.88 \; (-0.1 \; \text{to} \; 4.0)$			
Obstructive ^{§∮∫}	2.58 ± 4.68 (0.0 to 20.4)	0.99 ± 1.29 (0.0 to 4.4)	2.52 ± 5.42 (0.0 to 31.6)	5.80 ± 8.14 (0.0 to 26.3)			
Central	0.17 ± 0.35 (0.0 to 1.5)	$0.19 \pm 0.46 \ (0.0 \text{ to } 3.1)$	0.17 ± 0.25 (0.0 to 0.8)	$0.17 \pm 0.56 \ (0.0 \text{ to } 3.5)$			
Mixed	0.07 ± 0.16 (0.0 to 0.9)	0.07 ± 0.16 (0.0 to 0.8)	$0.03 \pm 0.10 \ (0.0 \ to \ 0.5)$	$0.01 \pm 0.06 \ (0.0 \text{ to } 0.3)$			
Hypopnea∮	3.54 ± 4.22 (0.0 to 18.2)	2.00 ± 1.55 (0.0 to 6.0)	2.66 ± 2.88 (0.0 to 14.5)	5.02 ± 6.88 (0.0 to 31.8)			
Hypopnea [∮] AHI ^{§∮∫}	6.4 ± 8.1 (0.0 to 33.9)	$3.2 \pm 2.1 \ (0.0 \text{ to } 8.1)$	5.4 ± 6.3 (0.0 to 34.6)	11.0 ± 12.1 (0.0 to 45.8)			
AHI (log)∮	$0.51 \pm 0.56 \; (-0.7 \; \text{to} \; 1.5)$	$0.44 \pm 0.33 \; (-0.5 \; \text{to} \; 0.9)$	$0.54 \pm 0.44 \; (-0.5 \text{ to } 1.5)$	$0.74 \pm 0.62 \; (-0.7 \; \text{to} \; 1.7)$			
MinSaO ₂ §∮	87.4 ± 5.6 (76.0 to 96.0)	88.2 ± 5.9 (61.0 to 96.0)	85.3 ± 9.0 (50.0 to 95.0)	82.7 ± 10.0 (50.0 to 95.0)			
MinSaO₂ (log) ^{§∮}	1.94 ± 0.03 (1.9 to 2.0)	1.94 ± 0.03 (1.8 to 2.0)	1.93 ± 0.05 (1.7 to 2.0)	1.91 ± 0.06 (1.7 to 2.0)			
Arousal index	4.6 ± 3.2 (0.8 to 20.5)	4.0 ± 2.3 (1.4 to 12.8)	3.7 ± 2.9 (1.0 to 17.3)	4.2 ± 3.1 (0.4 to 14.7)			
Tonsil (≥3)	33 (75.0)	35 (70.0)	26 (81.3)	29 (64.4)			
Adenoid (>0.67)	13 (37.1)	22 (48.9)	20 (62.5)	18 (50.0)			
Allergy	33 (63.5)	42 (75.0)	25 (65.8)	29 (56.9)			
Sinusitis	6 (11.5)	12 (21.4)	5 (13.2)	8 (15.7)			
Asthma	2 (3.8)	2 (3.6)	1 (2.6)	2 (3.9)			

Abbreviations: AHI, apnea - hypopnea index; BMI, body mass index; MinSaO₂, minimum arterial oxygen saturation. *Values are given as mean \pm /s.d., mean \pm /s.d. (range), or No (%) unless otherwise indicated. †Significant difference using Bonferroni posteriori comparisons (P < 0.05; underweight vs overweight). *Significant difference using Bonferroni posteriori comparisons (P < 0.05; underweight vs obesity). *Significant difference using Bonferroni posteriori comparisons (P < 0.05; normal vs overweight). *Significant difference using Bonferroni posteriori comparisons (P < 0.05; normal vs obesity). *Significant difference using Bonferroni posteriori comparisons (P < 0.05; overweight vs obesity).

Bar graph

Purpose: Show RELATIVE frequency or proportion in each category.

If showing proportions, All bars add up to 100%; If showing frequencies (counts), all counts add up to the total sample size;

Variants:

Stacked, clustered, stacked and clustered

The Danger of Histogram: Appearance under influence of bin size

Recommended: Density Plot

A closer look at the empirical distribution of x

Handling Skewed Distributions of Variables in the Data Set

WITH CAUTION, take out outlying values or transform. In either case,

- 1. Meticulously describe the distribution with/without transformation (outlying values)
- 2. Make appropriate assumptions about the transformations and/or outlying values
- 3. Act and justify your actions, NOT with probability/statistics but with science/medicine

Density Plot

The amount being plotted is an approximation to the probability density function of the population from which your data is drawn.

Recommended: download Excel macro "kernel zip" at

http://www.rsc.org/Membership/Networking/InterestGroups/Analytical/AMC/Software/kerneldensities.asp Original article

http://www.rsc.org/images/data-distributions-kernel-density-technical-brief-4_tcm18-214836.pdf

For good karma, please drop a thank-you note at http://www.rsc.

org/Membership/Networking/InterestGroups/Analytical/Contacts.asp

if you decide to use the Excel macro

SPSS: http://www.ats.ucla.edu/stat/spss/library/ggraph_examples.htm

Proper Transformations of data whose distribution is left-skewed

mean(6E15)median(4E15)skew(0.8)

mean(3E5)median(3E5)skew(-0.04)

Cannot eyeball everything. Transform, calculate skewness, transform again, calculate again...

Proper Transformations of data whose distribution are right-skewed

mean(351.556)median(182.5)skew(4.234)

*Logarithmic transformations are often used to transform right-skewed variable distributions as well

Stem and Leaf Plot

Excel macro: statistics.unl. edu/faculty/bilder/stat2023/excel/stem-and-leaf.xls

Again, for good karma: bilder@unl.edu; chris@chrisbilder.com

SPSS: Analyze -> Descriptive Statistics -> Explore -> Plots -> Stem-and-Leaf http://www.math.ou.edu/~mcknight/4753/spss/SPSS4.pdf