Session 3: Numbers

Li (Sherlly) Xie

Session 3 Flow

Session 2 \& 3 Tasks

Break

Terminology
Population, Sample, Observation
Probability vs Empirical Distribution
Descriptive Statistics
sample size
central tendency measures: mean \& median
variability measures: variance, standard deviation, standard error, range

A Glimpse at the Data

I	A	B	C	D	E	F	G	H	I	J		K
1	ID	gender	race	FHDM	history of GERD	gestation	why referred	age	Ht.m	Wt.kg	BMI	
2	1	F	Asian	?	no	33	abnormal QR in EKG	16	1.2	46		31.94
3	2	M	asian	no	no		32 had chest pain	12	1	41		41.00
4	3	M	Caucasian	type 1		37	cp , syncope	12	1.54	36		15.18
5	4		African american	1		38	cp , abnormal ekg	15	1.6	37		14.45
6	5	F	caucasian	2		38	couplet	14	1.28	41		25.02
7	6		africanamerican	father			cp	8	0.5	28		112.00
8	7		AA	cousin	yes		fam hist VT	13	1.1	30		24.79
9	8	M	Cauc	type 2, mother	yes	32	ADHD	12	0.9	30		37.04
10	9	M	A	yes			SV beat, cp	16	1.64	36		13.38
11	10		Asian	yes			syncope	16	1.66	41		14.88
12	11	M	Caucasian		yes		cp	11	1.2	30		20.83
13	12	M	Cauc				cp	10	1.2	28		19.44
14	13	M	cauc				autism	16	1.72	37		12.51
15	14	M	African american	no	yes		syncope	8		24		
16	15	M	Caucasian	no	yes	25		13	1.64	33		12.27
17	16		Caucasian	yes			cp, syncope	17	1.8	48		14.81
18	17		Latino		yes		syncope	15	1.4	46		23.47
19	18		africanamerican			46		15	1.33	46		26.00
20	19	M	africanamerican	uncle			on BB for PVC	16	1.12	48		38.27
21	20	M	african Amer		yes	22		12	1.21	40		27.32
22	21		Caucasian	yes		36		13	1.26	40		25.20
23	22	M	caucasian				ADHD	11	1.04	26		24.04

Session 2 Tasks

1. Convert the qualitative information in "FHDM" and "why referred" into quantitative information.
2. How would you deal with the empty cells in "history of GERD, "why referred", "Ht.m" and "BMI"? Explain your reasoning.
3.Generate 5 statistically testable hypotheses
3. Design a study for 1 of the hypotheses in \#3, define the nature of your study.

Missing Data

Rule of thumb: if 10% or more observations are missing for a variable in a sample, then that variable is "in danger".
Under 10\%: Report the percentage, do complete data analysis, assume the missing observations are missing at random
Example: a data set consists of subjects 1-6, variables A amd B. Subject 1-3 miss variable A, subjects 4-6 miss variable B, removing all missing data leaves NO subjects for analyses for BOTH A and B

Population, Sample, Observation

The Mathematical assumptions

The assumptions we CANNOT change: independent and vs
identically distributed random variables

What we usually get

And randomization does NOT save us from this

So what does randomization do?

It saves the investigator from the investigator's bias in assigning treatments to the subjects. It does this AND ONLY this.

Randomization does not make the sample representative; It does not give favorable pvalues; It does not guarantee "balance" to the placebo vs trt grps; it is a untestable/scientifically AND mathematically unverifiable belief/claim.

Probability vs Empirical Distributions

Usually, it is assumed that random variables has some probability distribution BEFORE the experiment and an empirical (i.e. data) distribution is obtained AFTER the experiment is performed.

Probability distributions are CONVERTIBLE
probability distributions conversion

Sample size

Sample size is the number of observations sampled from the population. The larger the better (the largest sample is the size of the population)
Probability does not apply to statistical inferences made using the entire population

Law of Large Numbers in a simple example:
2 vs 2 billion flips of a fair coin. more samples=closer to "truth"

2 Measures of central tendency: Mean $\&$ Median

T test, z test and ANOVA has the IMPLICIT assumption that the distribution is normal (at least roughly symmetric)

This is important:
For symmetric distributions, mean=median. For skewed distributions, they are not equal. Median is more "stable" (we call it "robust to outliers") than the mean.

How skewed is skewed?

Mean \& Central Limit Theorem

Central Limit Theorem
REGARDLESS OF THE DISTRIBUTION, means of samples (from the same distribution) follow a normal distribution, symmetrically distributed around the "true" mean of the population.

Variability

Variability measures like variance \& standard deviation (SD) expresses how far the individual data points are away from the mean

Example

1 sample containing 5 observations: (1,4,3,6,11) mean $=(1+4+3+6+11) / 5=5$
median: middle value of $(1,3,4,6,11)=4$
Is this distribution skewed, symmetric or normal?

$$
\text { Variance }=\frac{(1-5)^{2}+(4-5)^{2}+(3-5)^{2}+(6-5)^{2}(11-5)^{2}}{(5-1)}=14.5
$$

SD = square root of 14.5, ~ 3.8
Range $=\max -\min =11-1=10$
standard deviation=square root of variance standard error=standard deviation of MEANS between samples

What could be inferred about standard error if under repeated sampling, the averages from different samples do not vary much?

Standard error must be small.

What could be inferred about standard error from knowing the value of standard deviation? (assignment problem)

Excel and SPSS Commands: Excel

For this week's task (Due next Tuesday 9am), please explore and use the following Excel commands:
=skew()
=stdev()
=average()
=median()
$=\max ()-\mathrm{min}()$ gives range
$=\operatorname{var}()$
=sqrt(var()) Should give the same results as =stdev()

Excel and SPSS Commands: SPSS

2 commands:
"descriptives"
"frequency"

This week's task will be up on the web shortly.

Next week's main topic:
Graphic exploration \& display of data

See you!

