# Session 2: Probability & Study Design

Li (Sherlly) Xie

## Session 2 Flow

**Probability Principles** 

**Break** 

Study Design

## **Probability Concepts**

Law of total probability

Conditional probability

Intersection

Union

Mutual exclusivity

Subset

Exchangeability

Complimentary sets



## Complement & Union, Illustrated

blue: children age 0-18

lighter blue: having family history of asthma

4-horn star: having clinically diagnosed asthma

pink: overweight (at or above 95th age & gender

adjusted pop percentile)

brown: high-energy low-nutrient diet

purple: underweight (below 30th perc)

orange: severely underweight (below 15th perc)

## Now answer these questions

- 1. Characterize the entire population
- 2. Is it possible to tell where the two ovals SHOULD belong or their intersections with the horns of the star based solely on their positions?
- 3. Estimate the % overlap between the severely underweight and underweight individuals and the % overlap between the severely underweight and the whole population of individuals. Are the 2 percentages the same? If you are to sample a severely underweight individual, from which population--the entire population or the underweight population--are you more likely to encounter one?
- 4. What else do you observe? What are some other questions about this population you could ask?

#### What about the EDGE?



Respiratory Research (IF 3.36)

Radiology (IF 5.73)

## Statistics-friendly research aims/hypotheses

Use words like "explore" and "describe" with "the association between X and Y"Numbers (appearances) answer the DICHOTOMOUS QUESTION: to be or not to be

A pair of compatible hypotheses pertains to dichotomy AND ONLY dichotomy

But we ask incompatible questions all the time, because we think numbers are statistics

## Example

Typical pairs of hypotheses:

Null (H0): drug effective at delaying cancer recurrence

Alternative (Ha): drug ineffective at delaying cancer recurrence

COMPLIMENTARY but incompatible: there are a million different ways to be effective and ineffective

## Questions to address during study design

- How do you define and measure your outcome (dependent variable) and other variables in your data (independent variables)?
- How do you account for potential confounders that could cripple your inference?
- How do you sample?
- What EXACTLY do you wish to know & how flexible can you be with your aim?
- This is what a statistician cannot tell you--use your medical expertise & pubmed.

## Variations of... the same aim

```
Original aim: which factor is ASSOCIATED with
the lowest # of occurrences of disease X (ie
the "protective" factor)?
Variation 1: ... occurrences of stomach pain?
Variation 2: ... lowest concentration of
pathogen ____?
Variation 3: ... least # of ER visits by cases
within 3 days after exposure?
```

There are many ways to express the idea of "protective"

## Study Designs



## Strengths

#### Case control

Good for studying rare conditions, fast, could examine multiple risk factors simultaneously, useful as initial studies to establish associations

#### Cohort

Each cohort is relatively homogeneous (subjects can be matched to limit confounding, results could be standardized)

#### Randomized controlled trial

Randomization reduces the probability of population bias, easier to blink/mask than observational studies, clearly defined study population, data obtained under this design are in better agreement with the assumptions hypothesis tests and statistical models make about the observations.

#### Weaknesses

#### Case control studies:

Recall bias; control may be hard to find, no causal inference, cannot be used to evaluate diagnostic test

#### Cohort:

Cohort identification may be difficult due to confounding variables, no causal inference, expensive (longitudinal), possible larger loss to follow-up

#### Randomized controlled trial:

Expensive, volunteer bias (representativeness of sample and generalizability of results), hard to reveal causation, loss to follow-up

## Brief Comment on Systematic Review and Meta-Analysis

Systematic review: Exhaustive review of the current literature and other sources.

Meta-Analysis: A subset of systematic reviews; A method of systematically pooling qualitative and quantitative results across studies to develop a single conclusion.

Advantage: great statistical power (large overall sample size), more reliable than single studies, meta-analytic results generalizable to a greater population.

Disadvantage:

Heterogeneity of study populations;

Definition of the same outcome may vary

Outcome may be measured in different ways (instruments, protocols, etc)

Quality of pooled evidence depends on the quality of each included study

## Possible Designs

RCT: always prospective

Observational studies:

prospective and retrospective cohort

retrospective case-control

cross-sectional

#### Recommended References:

- 1. Research Design Comparison/Contrast
- 2. <u>National University of Health Sciences Overview of Study Designs in Clinical Research</u>
- 3. <u>University of Minnesota Libraries UNDERSTANDING RESEARCH</u> STUDY DESIGNS

#### This week's task

Data organization. Due Tuesday 2/19/2013 NOON via e-mail (LI.XIE@NEMOURS.ORG)

If you missed hw1, please do both this week. hw1 can be obtained from Mrs Rhonda Carter

See you next Wednesday!