Statistics

Chi-square test, Relationship among variables: scatterplots, correlation, simple linear regression, multiple regression and coefficient of determination

February 10, 2010

Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours Bioinformatics Core Facility

USE

- Testing the population variance $\sigma^2 = \sigma_0^2$.
- Testing the goodness of fit.
- Testing the independence/ association of attributes

Assumptions

- Sample observations should be independent.
- Cell frequencies should be >= 5.
- Total observed and expected frequencies are equal

• Formula: If x_i (i=1,2,...n) are independent and normally distributed with mean μ and standard deviation σ , then,

$$\sum_{i=1}^{n} \left(\frac{x_i - \mu}{\sigma} \right)^2$$
 is a χ^2 distribution with n d.f.

• If we don't know μ , then we estimate it using a sample mean and then, $\sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{\sigma} \right)^2$ is a χ^2 distribution with (n-1) d.f.

 For a contingency table, we use the following chi- square test statistic,

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}, \text{ distributed as } \chi^2 \text{ with (n-1) d.f.}$$

 O_i = Observed Frequency

 E_i = Expected Frequency

	Male	Female	Total
	O(E)	O(E)	
Group 1	9 (10)	11 (10)	20
Group 2	8 (10)	12 (10)	20
Group 3	11 (10)	9(10)	20
	30	30	60

Chi-square Test— calculation of expected frequency

- To obtain the expected frequency for any cell, use:
- Corresponding (row total X column total) / grand total
- E.g: cell for group 1 and female, substituting: (30 X 20 / 60) =
 10

Chi-square Test: SPSS demonstration

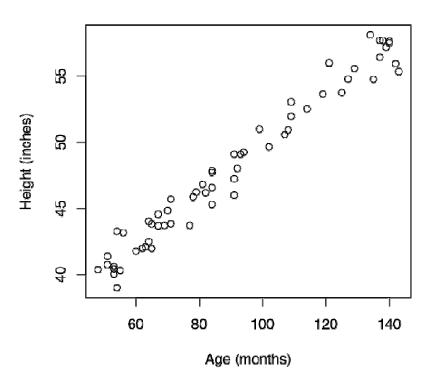
 Analyze->Descriptive statistics -> Crosstabs -> Pick row and column variables, select other options and click ok

Relationships among variables

- Response (dependent) variable(s) measure the outcome of a study.
- Explanatory (Independent) variable(s) explain or influence the changes in a response variable
- Outlier an observation that falls outside the overall pattern of the relationship.
- Positive Association An increase in an independent variable is associated with an increase in a dependent variable.
- **Negative Association** An *increase* in an independent variable is associated with a *decrease* in a dependent variable.

Scatterplots

Scatterplot

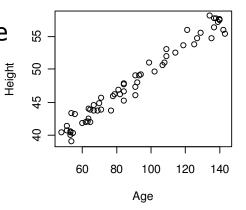


- Shows relationship between two variables (age and height in this case).
- Reveals form, direction, and strength of the relationship.

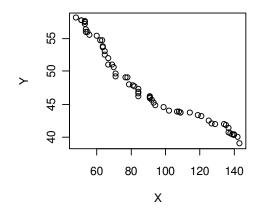
Scatterplots

Scatterplot of Age vs Height

Strong positive association

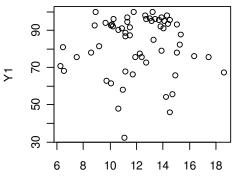


Scatterplot of varibles X and Y



Strong negative association

Scaterplot of variables X1 and Y1



X1

Points are scattered with a poor association

Nemours Biomedical Research

Scatterplots - SPSS Demo

 Graphs->Legacy Dialogues-> Scatter/Dot->select Simple scatter and click on Define. In the new window select variables for x axis (independent) and y axis (response), write titles and labels and then click ok.

- Correlation measures the degree to which two variables are associated.
- Two commonly used correlation coefficient:
 - Pearson Correlation Coefficient
 - Spearman Rank Correlation Coefficient

• **Pearson Correlation Coefficient:** measures the direction and strength of the relationship between two quantitative variables. Suppose that we have data on variables x and y for n individuals. Then the correlation coefficient *r* between x and y is defined as,

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Where, s_x and s_y are the standard deviations of x and y.

- r is always a number between -1 and 1. Values of r near 0 indicate little or no linear relationship. Values of r near -1 or 1 indicate a very strong linear relationship.
- The extreme values r=1 or r=-1 occur only in the case of a perfect linear relationship, when the points lie exactly along a straight line.

- Positive r indicates positive association i.e. association between two variables in the same direction, and negative r indicates negative association.
- Scatterplot of Height and Age shows that these two variables possess a strong, positive linear relationship. The correlation coefficient of these two variables is 0.9829632, which is very close to 1.

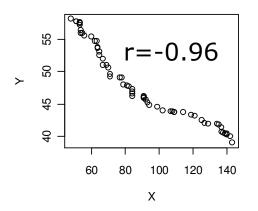
- Spearman Rank Correlation Coefficient:
 - This is non-parametric measure of correlation between two variables
 - This is basically a pearson correlation coefficient of the ranks of data of two variables instead of data itself.

Scatterplot of Age vs Height

80

60

Scatterplot of varibles X and Y

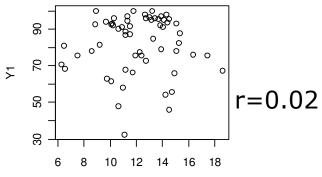


Scaterplot of variables X1 and Y1

100

Age

120

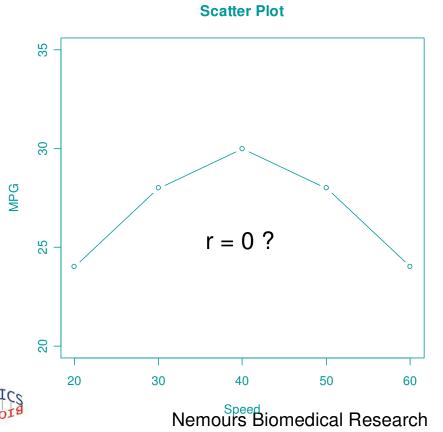


X1

140

Nemours Biomedical Research

Strong association but no correlation: Gas mileage of an auto mobile first increases than decreases as the speed increases like the following data:



 Speed
 20
 30
 40
 50
 60

 MPG
 24
 28
 30
 28
 24

Scatter plot shows an strong association. But calculated, r = 0, why?

It's because the relationship is not linear and r measures the linear relationship between two variables.

Influence of an outlier

Consider the following data set of two variables X and Y:

```
X 20 30 40 50 60 80
Y 24 28 30 34 37 15
```

$$r = -0.237$$

After dropping the last pair,

```
X 20 30 40 50 60
Y 24 28 30 34 37
```

$$r = 0.996$$

Correlation: SPSS demonstration

 Analyze-> Correlate -> Bivariate and then select variables for correlations

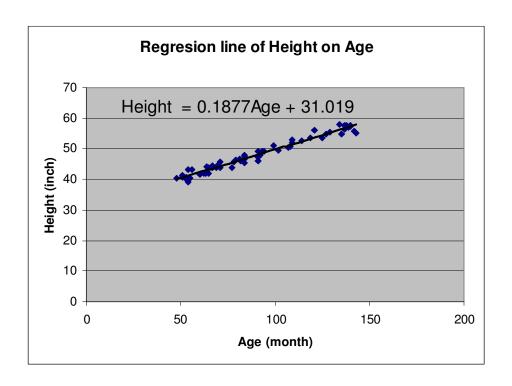
- Regression refers to the value of a response variable as a function of the value of an explanatory variable.
- A regression model is a function that describes the relationship between response and explanatory variables.
- A simple linear regression has one explanatory variable and the regression line is straight.
- The response variable is quantitative and independent variable (s) can be both quantitative and categorical.
- Categorical variables are handled by creating dummy variable (s).

 The linear relationship of variables Y and X can be written as in the following regression model form

$$Y = b_0 + b_1 X + e$$

where, 'Y' is the response variable, 'X' is the explanatory variable, 'e' is the residual (error), and b_0 and b_1 are two parameters. Basically, b_0 is the intercept and b_1 is the slope of a straight line $y = b_0 + b_1 X$.

A simple regression line is fitted for height on age. The intercept is 31.019 and the slope (regression coefficient) is .1877.



Assumptions:

- o Response variable is normally distributed.
- o Relationship between the two variables is linear.
- o Observations of response variable are independent.
- o Residual error is normally distributed with mean 0 and constant standard deviation.

Estimating Parameters b₀ and b₁

- Least Square method estimates b₀ and b₁ by fitting a straight line through the data points so that it minimizes the sum of square of the deviation from each data point.
- Formula:

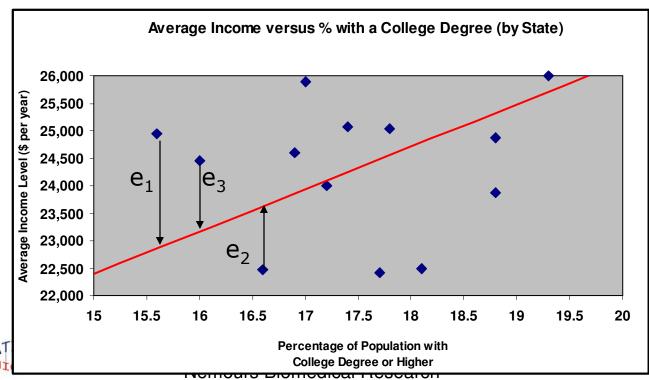
$$\hat{b}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \qquad \hat{b}_{0} = \overline{Y} - \hat{b}_{1} \overline{X}$$

Fitted Least Square Regression line

- Fitted Line: $\hat{Y}_i = \hat{b}_0 + \hat{b}_1 X_i$
- Where \hat{Y}_i is the fitted / predicted value of i^{th} observation (Y_i) of the response variable.
- Estimated Residual: $\hat{e}_{\scriptscriptstyle i} = Y_{\scriptscriptstyle i} \hat{Y}_{\scriptscriptstyle i}$
- Least square method estimates $\mathbf{b_0}$ and $\mathbf{b_1}$ to minimize the summed error: $\sum_{i=1}^{n} \hat{e}_i^2$

☐Fitted Least Square Regression line

In this example, a regression line (red line) has been fitted to a series of observations (blue diamonds) and residuals are shown for a few observations (arrows).



- Interpretation of the Regression Coefficient and Intercept
 - Regression coefficient (b₁) reflects the average change in the response variable Y for a unit change in the explanatory variable X. That is, the *slope* of the regression line. E.g.
 - Intercept (b₀) estimates the average value of the response variable Y without the influence of the explanatory variable X.
 That is, when the explanatory variable = 0.0.

Simple linear regression: SPSS demonstration

 Analyze ->Regression->Linear->select a dependent (e.g. height) and an independent variable (age) and other output options.

Multiple Regression

- Two or more independent variables to predict a single dependent variable.
- Multiple regression model of Y on p number of explanatory variables can be written as,

$$Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_p X_p + e$$

where b_i (i=1,2, ..., p) is the regression coefficient of X_i

Multiple Regression

Fitted Y is given by,

$$\hat{Y} = \hat{b}_0 + \hat{b}_1 X_1 + \hat{b}_2 X_2 + ... \hat{b}_p X_p$$

Where, \hat{b}_i is the estimate of b_i

• The estimated residual error is the same as that in the simple linear regression,

$$\hat{e}_i = Y_i - \hat{Y}_i$$

Multiple Regression: SPSS demonstration

 Analyze ->Regression->Linear->select a dependent variable (e.g. PLUC.pre) and more than one independent variables (e.g. age and LWAS) and other output options.

Coefficient of Determination (Multiple R-squared)

- Total variation in the response variable Y is due to (i) regression of all variables in the model (ii) residual (error).
- Total variation of y, SS (y) = SS(Regression)
 +SS(Residual)
- The Coefficient of Determination is,

$$R^2 = \frac{SS(\text{Regression})}{\text{Total } SS(Y)} = 1 - \frac{SS(\text{Residual})}{\text{Total } SS(Y)}$$

Coefficient of Determination (Multiple R-squared)

- R² lies between 0 and 1.
- R² = 0.8 implies that 80% of the total variation in the response variable Y is due to the contribution of all explanatory variables in the model. That is, the fitted regression model explains 80% of the variance in the response variable.

Coefficient of Determination (Multiple R-squared)

- A R² always increases with an increasing number of variables in the model, without consideration of sample size. This increase of R² may be due to chance variation.
- An Adjusted R² accounts for sample size and number of variables are being used in the model and reduce the possibility of chance variation.

Coefficient of Determination (Multiple R-squared): SPSS demonstration

- It's in the output of Multiple regression.
- For the previous example, Coefficient of determination is 0.039.

Thank you

