Statistics

Statistical Inference, test of hypothesis and sample size calculation

January 27, 2010

Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D.

Nemours Bioinformatics Core Facility

Statistical Inference

Sample

Population

- Statistical inference is the process by which we acquire information about populations from samples.
- Two types of estimates for making inferences:
 - Point estimation: Estimate the exact value of a specific population parameter.
 - Interval estimation: Estimate the range of values (an interval) within which a parameter value will probably lie with a given level of confidence.

Point estimate:

Draws inference about a population parameter by estimating its specific value. E.g. sample mean estimates the value of the population mean.

• Interval estimate:

Draws inferences about a population by estimating the value of an unknown parameter using an interval.

- Precision of an estimate:
 - If we repeat sampling of the same size from a population, the statistic varies as sample varies. This variability is known sampling variability.
 - Standard error (SE) of an estimate measures the sampling variability or the precision of that estimate.
 - It indicates how precisely one can estimate a population value from a given sample.
 - For a large sample, approximately 68% of times sample estimate will be within one SE of the population value.

Hypothesis

- Statement or belief about some characteristic of a population or population distribution such as it's mean or standard deviation
- Types of Hypotheses
 - Null Hypothesis (H₀): The hypothesis that is assumed to be true unless contradicted by data observed in a sample. It's often a statement of statistical neutral stance and it assumes that any observed difference in data is due to chance or sampling variability. E.g. there is no effect of test drug
 - Alternative Hypothesis(H₁): The hypothesis that assumes that the observed difference in data is not just due to chance and it is the hypothesis that one must assumed if the H₀ is rejected.
- H₀ & H₁ are complementary
- Normally want to reject H₀ in favor of H₁

		Real Situation	
D		Ho is true	Ho is false
e	Reject Ho	Type I	Correct
c		error	Decision
i			
S	Accept Ho	Correct	Type II
i	_	Decision	Error
0			
n			

$$\alpha = P(Type\ I\ Error)$$
 $\beta = P(Type\ II\ Error)$

• Goal: Keep α , β reasonably small

Nemours Biomedical Research

- Level of Significance: The probability of type I error is known as the level of significance.
- **Power (1-β):** The probability of rejecting H₀ when alternative hypothesis is true at a fixed level of significance (α). That is, the probability of rejecting null hypothesis for a specified value of an alternative hypothesis.
 - Power of a test is a function of sample size and the parameter of interest.
 - We calculate power for a particular value of the parameter in alternative hypothesis.
 - An increased sample size increases power of a test.

- We aim to make inferences controlling both type I and type II errors.
- The reduction in one results in an increase in the other
- The consequence of type I error seems to be more severe than that of type II error.
- That's why we choose a test that minimizes the probability of type II
 error (maximize the power of the test) keeping the probability of type I
 error at a fixed low level (say 0.05).

- Reasons for estimating power prior to conducting a research study:
 - To determine the sample size required for a sufficient power to correctly detect a significant difference.

- Increasing Power: Following steps can increase power of a test:
 - Increase the sample size
 - Increase the significance level (α)
 - Reduce the variability
 - Enlarge the effect size

Test Statistic

- A numerical summary of a set of data that reduces the data to a single value that can be used to perform a hypothesis test
- t, F, Chi-square, Sign, Mann-Whitney U, Wilcoxon rank sum are some commonly used test statistics.

P-value:

- The probability, assuming H₀ is true, that the test statistic would take a value as extreme or more extreme than that actually observed.
- A statement of the likelihood that the the null hypothesis is true i.e. any observed difference in data is due to chance.
- The smaller the P-value, the stronger the evidence against H_0 provided by the data.
- A p-value of 0.05 implies that there is a 1 in 20 chance of a
 Type I error, i.e., rejecting H₀ when it is actually true.

- Confidence Interval (CI):
 - An interval within which the value of the parameter lies with a specified probability
 - A large sampling variability leads a wide interval reflecting the uncertainty of the estimate
 - It measures the precision of an estimate
 - A 95% CI of a parameter implies that if one repeats a study 100 times, the true measure of population (parameter) will lie inside the CI in 95 out of 100 measures.
 - If a parameter does not lie within 95% CI, indicates the significance at 5% level of significance

$CI = point \ estimate \pm \ (measure \ of \ how \ confident \ we \ want \ to \ be) \times (standard \ error)$

- What effect does a larger sample size have on the confidence interval?
- It reduces standard error and makes CI narrower indicating more precision of the estimate

- Hypothesis testing steps:
 - 1. Specify null (H₀) and alternative (H₁) hypotheses
 - 2. Select significance level (alpha) say 0.05 or 0.01
 - 3. Calculate test statistic e.g. t, F, Chi-square
 - 4. Calculate probability value (p-value) or confidence Interval (CI)?
 - 5. Describe the result and statistic in an understandable way.

- Select primary variables of interest and formulate hypotheses
- Determine/estimate standard deviation
- Decide a tolerance level of significance (α)
- Determine test statistic to use
- Determine desired power or confidence level
- Determine the effect size -- a scientifically or clinically meaningful difference

- Factors affecting sample size:
 - The larger the standard deviation, the larger the sample size needs to be
 - The smaller the likelihood of a Type I error, the larger the sample size must be
 - The greater the amount of power desired, the larger the sample size must be
 - The smaller the expected effect, the larger the sample size must be

An Example:

- Aim of the study: To test the hypothesis that kids with a parental history of obesity are at a higher risk of being obese themselves.
- Suppose prevalence of obesity is 2% among US kids, whereas it is 5% among US kids with a parental history (?).
- How many kids should we recruit to detect this difference, (.05 .02 = .03) with a 90% power using a two-sided test with α =.05?
- Calculation shows that 340.2 ≈ 341 kids are needed for this study.
- Question: What are the possible H₀, H₁, and the test statistic we need to use?

- SPSS has a separate software 'SamplePower' for power and sample size calculation. It is not included in the basic SPSS editor for data analysis.
- Below are some useful links for free power and sample size calculation:
 - http://stat.ubc.ca/~rollin/stats/ssize/index.html
 - http://hedwig.mgh.harvard.edu/sample_size/size.html
 - http://www.stat.uiowa.edu/~rlenth/Power/index.html
 - http://cct.jhsph.edu/javamarc/index.htm
 - http://statpages.org/#Power

